1			

Reg. No.

G. VENKATASWAMY NAIDU COLLEGE (AUTONOMOUS), KOVILPATTI - 628 502.

UG DEGREE END SEMESTER EXAMINATIONS - NOVEMBER 2024.

(For those admitted in June 2021 and later)

PROGRAMME AND BRANCH: B.Sc., INFORMATION TECHNOLOGY

SEM	CATEGORY		COMPONENT	COURSE CODE	COURSE TITLE			
IV	PART-III		CORE ELECTIVE	U21IT4E2A	OPERATIONS RESEARCH & NUMERICAL ANALYSIS			
Date &	& Sessio	n: 15.1	1.2024 / AN	Time : 3 hours	Maximum: 75 Marks			
Course Outcome	Bloom's K-level	Q. No.	<u>SECTION – A (</u> 10 X 1 = 10 Marks) Answer <u>ALL</u> Questions.					
CO1	K1	1.	When total supply is equal to total demand in a transportation problem, the problem is said to be. a) Balanced b) Unbalanced c) Degenerate d) None of the above					
CO1	K2	2.	Which technique is used in finding a solution for optimizing a given objective, such as profit maximization or cost reduction under certain constraints?a) Quailing Theoryb) Waiting Linec) Both A and Bd) Linear Programming					
CO2	K1	3.	In transportation Problems, VAM stands for a) Value Addition Method b) Vogel's Approximation Method c) Virgenean Approximation Method d) None of these					
CO2	K2	4.	The transportation problem is basically a. a) Maximization model b) Minimization model c) Transshipment problem d) Iconic model					
CO3	K1	5.	Sequencing is subset ofa) Routingb) Schedulingc) Expeditingd) none of these					
CO3	K2	6.	When sequencing jobs , an approach which may be used to help cash constrained situation is a) Shortest operation time first b) Last in First Out c) First in first Out d) Longest operation time first					
CO4	K1	7.	The matrix A=[4 12 36] is. a) Column matrix b) Row matrix c) Horizontal matrix d) Scalar matrix					
CO4	K2	8.	If A is a square matrix s a) I b) 0	such that A ² =A (I-A) ³ + c) I-A	A is equal to. d) I+A			
CO5	K1	9.	The process of computing a) Interpolation b) E	ng y corresponding x v xtrapolation c) Curv	where x <x as.<br="" called="" is="">re fitting d) None of these</x>			
CO5	K2	10.	The modification of Gauss elimination method is called asa) Gauss Seidalb) Jacobi's Methodc) Gauss Jordand) Relaxation Method					
Course Outcome	Bloom's K-level	Q. No.	SECTION – B (5 X 5 = 25 Marks) Answer ALL Questions choosing either (a) or (b)					
CO1	K3	11a.	What is transportation	problem? Formulation	of Transportation.			
CO1	K3	11b.	Write the difference between Transportation Problem vs. Assignment Problem.					

CO2	K3	12a.	Write the steps of A	Assignment	problem					
			(OR)							
CO2	K3	12b.	Solve the following assignment problem.							
							2			3
			Р	ç)			26		15
			Q	1	3			27		6
			R	3.	5			20		15
			S	1	8			30		20
0.0.0	77.4	1.0		• • •	1	1.				
CO3	K4	13a.	Illustrate Processing a job through machines.							
000	TZ 4	1.01	A		:		()	- 1- :		
003	K4	130.	A company has to process five items on three machine A,B.C Processing times are							
			given in the following	ng table. Fii		quen			liinizes t.	ne total elapsed time.
					Item	A	В	C		
					1	4	4	6		
					2	9	5	9		
					3	8	3	11		
					4	6	2	8		
					5	3	6	7		
004	17.4	14-	Illesterte Determin		::41		1.	•		
C04	K4	14a.	inustrate Determinant of Matrix with example.							
004	17.4	1.41-	Column the fallowing	acception of	· ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		cj ation			
C04	K4	140.	Solve the following equation of gauss elimination method. $y_{\pm}y_{\pm}z_{\pm}^{-2}$, $y_{\pm}^{\pm}y_{\pm}^{\pm}z_{\pm}^{-2}$, $y_{\pm}^{\pm}z_{\pm}^{\pm}z_{\pm}^{-1}$							
COF	VE	150	X+y+Z-Z, $X+Zy+3Z$, 2X+31+42	/-11					
005	кэ	15a.	Discuss Newton's Interpolation formula.							
COF	VE	156	UR)							
005	кэ	150.	x+3x=7 and $3x+4x$	= 11	ine Gaus	s ciill	mal		uu.	

Course Outcome	Bloom's K-level	Q. No.	$\frac{\text{SECTION} - C (5 \text{ X 8} = 40 \text{ Marks})}{\text{Answer } \frac{\text{ALL } Q \text{uestions choosing either (a) or (b)}}$						
CO1	K3	16a.	Define LLP Problem and its method.						
CO1	K3	16b.	(OR) Solving Balanced Transportation problem by Northwest Corner Method Consider this scenario:						
			Destination						
			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
			Sources $\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
			Demand 250 350 400 200 1200						
CO2	K4	17a.	Solve the following assignment problem. Cell values represent cost of assigning job A, B, C and D to the machines I, II, III and IV. Machines $I II III IV$ $\boxed{\begin{array}{c c c c c c c c c c c c c c c c c c c$						
CO2	K4	17b.	Give the mathematical Formulation of Assignment problem.						
CO3	K4	18a.	Discuss the basic terminologies used in Sequencing Problem. (OR)						
CO3	K4	18b.	Explain the types of Sequencing problem.						
CO4	K5	19a.	Define Matrix and its types.						
CO4	K5	19b.	(OR) How to find Inverse Matrix with example.						
CO5	K5	20a.	Briefly explain Newton Forward and Backward Interpolation. (OR)						
CO5	K5	20b.	Solve the following system using Gauss-Jordan method, $2x+y+2z=10$ and $x+2y+z=8$ and $3x+y-z=2$						